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Abstract. In this paper, we investigate the action of pseudogroup of
all point transformations on the natural bundle of equations

y′′ = a3(x, y)y′ 3 + a2(x, y)y′ 2 + a1(x, y)y′ + a0(x, y) .

We construct differential invariants of this action and solve the equiva-
lence problem for some classes of these equations in particular for generic
equations.

1. Introduction

This paper is devoted to differential invariants and the equivalence prob-
lem of ordinary differential equations of the form

y′′ = a3(x, y)y′ 3 + a2(x, y)y′ 2 + a1(x, y)y′ + a0(x, y) . (1)

There are different approaches to construct differential invariants of these
equations, see R. Liouville [19], S. Lie [17, 18], A. Tresse [23], E. Cartan [6],
G. Thomsen [22], and R.B. Gardner [7].

In [26], we presented an approach to this problem differing from above
mentioned ones. In this paper, we state in detail this approach, construct
tensor and scalar differential invariants in this way, and solve the equivalence
problem for some classes of equations (1), in particular, for generic equations.

Briefly, our approach is as follows. Every equation E of form (1) can be
considered as a geometric structure. To this end, we identify the equation
E with the section

SE : (x, y) 7→ (x, y, a0(x, y), a1(x, y), a2(x, y), a3(x, y) )

of the product bundle π : R2 ×R4 −→ R2. Thus the set of all equations (1)
is identified with the set of all sections of π. It is well known, see [2], that
every point transformation of variables x and y transforms every equation
(1) to equation of the same form1. It follows that every point transformation
f of the base of π generates the transformation of sections of π. This means
that f can be lifted in the natural way to the diffeomorphism f (0) of the
total space of π. Thus the bundle π of equations (1) is a natural bundle.
Therefore equation (1) considered as a section of π, is a geometric structure,
see [1]. By πk : Jkπ → R2 denote the bundle of k–jets of sections of π,
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k = 1, 2, . . .. Every lifted diffeomorphism f (0) is lifted in the natural way
to the diffeomorphism f (k) of Jkπ. The lifting of point transformations
generates the natural lifting of every vector field X in the base of π to the
vector field X(k) in Jkπ. Suppose a lifted vector field X(k) passes through a
point θk ∈ Jkπ. Then the valueX(k)

θk
of this field at θk is defined by the k+2–

jet jk+2
p X of the field X at the point p = πk(θk). Let θk+1 ∈ Jk+1π. Then

there exists a section S of π such that θk+1 = jk+1
p S, where p = πk+1(θk+1).

The section S generates the section jkS of the bundle πk by the formula
jkS : p 7→ jkpS. It is clear that θk+1 is identified with the tangent space to
the image of jkS at the point θk = jkpS. We denote this tangent space by
Kθk+1

. Now we can introduce the following vector space of k + 2–jets at p
of vector fields in the base passing through p :

Aθk+1
= { jk+2

p X |X(k)
θk

∈ Kθk+1
} .

The spaces Aθk+1
, k = 0, 1, 2, . . ., possess nontrivial properties. These prop-

erties allow us to construct in the natural way some geometric objects ωθk+1

on the tangent space to the base at the point p = πk+1(θk+1). As a result,
we obtain fields of these objects on Jk+1π

θk+1 7−→ ωθk+1
.

These fields are differential invariants of the considered equations w.r.t.
point transformations.

The pseudogroup of all point transformations of the base acts by the lifted
diffeomorpisms on every Jkπ. As a result, every Jkπ is divided into orbits
of this action. The bundles J0π and J1π are orbits of this action. The
bundle J2π is the union of two orbits: Orb0

2 and Orb2
2. First one is an orbit

of codimension 0, the second one has codimension 2 and consists of 2–jets
of sections SE such that the equation E can be reduced to the linear form
by a point transformation, see [11, 26]. The bundle J3π is the union of four
orbits: an orbit Orb0

3 of codimension 0, an orbit Orb1
3 of codimension 1,

an orbit Orb2
3 of codimension 2, and the orbit of codimension 6 that is the

inverse image of Orb2
2 over the natural projection J3π → J2π.

In this paper, we construct differential invariants and solve the equivalence
problem for equations E satisfying the condition j3SE ⊂ Orb0

3.
All manifolds and maps are smooth in this work. By jkpf denote the k–jet

of the map f at the point p, k = 0, 1, 2, . . . ,∞, by R denote the field of
real numbers, and by Rn denote the n–dimensional arithmetic space. We
assume summation over repeated indexes in all formulas.

2. The bundle of equations

2.1. Liftings of point transformations. Consider the product bundle

π : R2 × R4 −→ R2, π : (x1, x2, u1, . . . , u4) 7→ (x1, x2),

where x1, x2 are the standard coordinates on the base of π and u1, u2, u3,
u4 are the standard coordinates on the fiber of π.

Let E be an arbitrary equation (1). We identify E with the section SE of
π defined by the formula

SE(p) =
(
p, a0(p), a1(p), a2(p), a3(p)

)
,
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where p = (x1, x2). Clearly, this identification is a bijection between the set
of all equations (1) and the set of all sections of π.

Recall that a point transformation of R2 is a diffeomorphism of some open
subset of R2 to R2.

Every point transformation f of R2 generates the transformation of E to
the equation Ẽ of the same form, see [2],

ỹ′′ = ã3(x̃, ỹ)ỹ′ 3 + ã2(x̃, ỹ)ỹ′ 2 + ã1(x̃, ỹ)ỹ′ + ã0(x̃, ỹ) .

The coefficients of Ẽ are expressed in terms of the coefficients of E and the
2-jets of the inverse transformation f−1:

ãi(p̃) = Φi
(
a0(f−1(p̃)), . . . , a3(f−1(p̃)), j2p̃f

−1
)
, i = 0, 1, 2, 3. (2)

It follows that the equations

p̃ = f(p), ũi = Φi
(
u1, . . . , u4, j2f(p)f

−1
)
, i = 1, 2, 3, 4.

define the diffeomorphism f (0) of the total space of π. It is easy to see that if
U is domain of f , then f (0) is defined on π−1(U ′), where U ′ is the everywhere
dense open subset of U . This diffeomorphism f (0) is called the lifting of f
to the bundle π. Obviously, the diagram

E
f (0)

−−−−→ E

π

y yπ
R −−−−→

f
R

is commutative (in the domain π−1(U ′) of f (0)).
Now equations (2) is represented in the terms of the transformation of

the corresponding sections in the following way

SẼ = f (0) ◦ SE ◦ f−1.

By jkpS denote the the k–jet at p of the section S of π, k = 0, 1, 2, . . . ,∞.
By

πk : Jkπ −→ R2, πk : jkpS 7→ p ,

denote the bundle of all k–jets of sections of π. By x1, x2, uiσ, i = 1, . . . , 4,
0 ≤ |σ| ≤ k, we denote the standard coordinates on Jkπ, here σ is the multi-
index {j1 . . . jr}, |σ| = r, j1, . . . , jr = 1, 2. By σj we denote the multi-index
{j1 . . . jrj}. The natural projection

πk, r : Jkπ −→ Jrπ , ∞ ≥ k > r,

is defined by πk, r( jkpS ) = jrpS. By Jkp π denote the fiber of the bundle πk
over the point p, that is Jkp π = π−1

k (p). Every section S of π generates the
section jkS of the bundle πk by the formula

jkS : p 7→ jkpS.

Every point transformation f of the base of π is lifted to the diffeomor-
phism f (k) of Jkπ by the formula

f (k)( jkpS ) = jkf(p)

(
f (0) ◦ S ◦ f−1

)
. (3)
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This diffeomorphism f (k) is called the lifting of f to the bundle πk Obviously,
for any ∞ ≥ l > m, the diagram

J lπ
f (l)

−−−−→ J lπ

πl, m

y yπl, m

Jmπ −−−−→
f (m)

Jmπ

is commutative. Suppose f and g are point transformations of the base of
π, then obviously,

(f ◦ g)(k) = f (k) ◦ g(k), k = 0, 1, . . .

By Γ we denote the pseudogroup of all point transformations of the base of
π. The pseudogroup Γ acts on every Jkπ by the lifted transformations.

2.2. Liftings of vector fields. Let X be a vector field in the base of π and
let ft be its flow. Then the flow f

(k)
t in Jkπ defines the vector field X(k) in

Jkπ, which is called the lifting of X to Jkπ.
It follows from the definition:

(πl, m)∗
(
X(l)

)
= X(m) , ∞ ≥ l > m ≥ −1 ,

where πl, −1 = πl and X(−1) = X, and

(f (k))∗(X(k)) = ( f∗(X) )(k), k = 0, 1, . . . ,

where f is an arbitrary point transformation of the base of π.

Proposition 2.1. The map X 7−→ X(k) is a Lie algebra homomorphism of
the algebra of all vector fields in the base of π to the algebra of all vector
fields in Jkπ.

Proof. See subsection 9.1 of Appendix. �

Recall the formulas describing lifted vector fields in the terms of the stan-
dard coordinates of Jkπ, see [14], [15]. Let S be a section of π defined in
the domain of X, p be a point of this domain, and θ1 = j1pS. Then the
vector-function ψX defined by the formula

ψX(θ1) =

 ψ1
X(θ1)
· · ·

ψ4
X(θ1) .

 =
d

dt
( f (0)

t ◦ S ◦ f−1
t )

∣∣∣
t=0

(p)

is the deformation velocity of the section S at the point p under the action
of the flow of X. Suppose

X = X1 ∂

∂x1
+X2 ∂

∂x2
and θ1 = (p, ui, uij).
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Then

ψX(θ1) =



−u1
1X

1 − u1
2X

2

−2u1X1
1 + u1X2

2 − u2X2
1

+X2
11

−u2
1X

1 − u2
2X

2

−3u1X1
2 − u2X1

1 − 2u3X2
1

−X1
11 + 2X2

12

−u3
1X

1 − u3
2X

2

−2u2X1
2 − u3X2

2 − 3u4X2
1

−2X1
12 +X2

22

−u4
1X

1 − u4
2X

2

−u3X1
2 + u4X1

1 − 2u4X2
2

−X1
22



, (4)

where Xi
j =

∂X i

∂xj
(p) and Xi

j1j2
=

∂2Xi

∂xj1∂xj2
(p). The vector field X(∞) is

described by the formula

X(∞) = X1D1 +X2D2 + �ψX
,

where

Dj =
∂

∂xj
+

∞∑
|σ|=0

4∑
i=1

uiσj
∂

∂uiσ
, j = 1, 2 , (5)

is the operator of total derivative w.r.t. xj and

�ψX
=

∞∑
|σ|=0

4∑
i=1

Dσ

(
ψiX

) ∂

∂uiσ
, Dσ = Dj1 ◦ . . . ◦Djr . (6)

The vector field X(k) is described by the formula

X(k) = (π∞, k)∗(X(∞)) = X1Dk
1 +X2Dk

2 + �k
ψX
, (7)

where

Dk
j =

∂

∂xj
+

k∑
|σ|=0

4∑
i=1

uiσj
∂

∂uiσ
, j = 1, 2 , (8)

�k
ψX

=
k∑

|σ|=0

4∑
i=1

Dσ

(
ψiX

) ∂

∂uiσ
.

The following important statement is obvious.

Proposition 2.2. Let θk ∈ Jkπ, p = πk(θk), and X(k) be a lifted vector field
passing through θk. Then the value X(k)

θk
of X(k) at the point θk is defined

by the (2 + k)–jet j2+k
p X of the vector field X at the point p.
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3. Isotropy algebras and orbits

3.1. Jets of vector fields. In this subsection, we recall necessary notions
concerning jets of vector fields, prolongations of subspaces, and Spencer’s
complexes , see [4], and [9].

By Wp we denote the Lie algebra of ∞–jets at p ∈ R2 of all vector fields
defined in R2 in neighborhoods of p. Recall that the structure of Lie algebra
on Wp is defined by the following formulas

λj∞p X = j∞p (λX) , j∞p X + j∞p Y = j∞p (X + Y ) ,[
j∞p X, j

∞
p Y

]
= j∞p [X,Y ] ∀λ ∈ R , ∀ j∞p X, j∞p Y ∈Wp .

By Lkp , k = −1, 0, 1, 2, . . ., we denote the subalgebra of Wp defined by

Lkp =
{
j∞p X ∈Wn

∣∣ jkpX = 0
}
, k ≥ 0 , L−1

p = Wp .

Obviously, Wp/L
k
p is the vector space of all k-jets at p of all vector fields

passing through p. In particular, Wp/L
0
p is the tangent space Tp to R2 at p.

We have the natural filtration

Wp = L−1
p ⊃ L0

p ⊃ L1
p ⊃ . . . ⊃ Lkp ⊃ Lk+1

p ⊃ . . . . (9)

By ρi,j , i > j ≥ 0, we denote the natural projection

ρi,j : Wp/L
i
p →Wp/L

j
p , ρi,j : jipX 7→ jjpX.

It is easy to prove that

[Lip , L
j
p ] = Li+jp , i, j = −1, 0, 1, 2, . . . .

It follows that the bracket operation on Wp generates the Lie algebra struc-
ture on the vector space L0

p/L
k
p

[ · , · ] : L0
p/L

k
p × L0

p/L
k
p → L0

p/L
k
p (10)

and generates the following maps :

[ · , · ] :Wp/L
k
p ×Wp/L

k
p →Wp/L

k−1
p , (11)

[ · , · ] :Tp × Lkp/L
k+1
p → Lk−1

p /Lkp . (12)

The last map generates the isomorphism

Lkp/L
k+1
p

∼= Tp ⊗ Sk(T ∗p ) . (13)

Let gk be a subspace of Lk−1
p /Lkp. The subspace (gk)(1) ⊂ Lkp/L

k+1
p is defined

by
(gk)(1) =

{
X ∈ Lkp/Lk+1

p

∣∣ [ v , X ] ∈ gk ∀ v ∈ Tp
}

and is called the 1-st prolongation of gk. Assume that the sequence of
subspaces g1 , g2 , . . . , gi , . . . satisfies to the property [Tp , gi+1 ] ⊂ gi.
Then for every gi, we have the Spencer’s complex

0 → gi
∂i,0−−→ gi−1 ⊗ T ∗p

∂i−1,1−−−−→ gi−2 ⊗ ∧2T ∗p
∂i−2,2−−−−→ 0 , (14)

where the operators ∂k,l : gk ⊗ ∧lT ∗p → gk−1 ⊗ ∧l+1T ∗p are defined in the
following way: every element ξ ∈ gk⊗∧lT ∗p can be considered as an exterior
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form on Tp with values in gk, then

( ∂k,l(ξ) )(v1, . . . , vl+1) =
l+1∑
i=1

(−1)i+1[ vi , ξ(v1, . . . , v̂i, . . . , vl+1) ] . (15)

3.2. Isotropy algebras. Let θk ∈ Jkπ and p = πk(θk). By Gθk
we denote

the isotropy group of θk,

Gθk
=

{
j2+k
p f

∣∣ f ∈ Γ , f (k)(θk) = θk
}
.

By gθk
we denote the Lie algebra of Gθk

. It can be considered as a subalgebra
of L0

p/L
2+k
p ,

gθk
=

{
j2+k
p X ∈ L0

p/L
2+k
p

∣∣ X(k)
θk

= 0
}

(16)

The algebra gθk
is called the isotropy algebra of θk. From this definition and

(7), we get

Proposition 3.1. Let j2+k
p X = (p, 0, X i

j , . . . , X
i
j1...j2+k

) in the standard co-
ordinates. Then j2+k

p X ∈ gθk
iff (0, X i

j , . . . , X
i
j1...j2+k

) is a solution of the
system of linear homogeneous algebraic equations(

Dσ(ψiX )
)
(θk) = 0 , i = 1, 2, 3, 4 , 0 ≤ |σ| ≤ k .

The natural filtration (9) generates the natural filtration of gθk

gθk
= g1

θk
⊃ g2

θk
⊃ . . . ⊃ g2+k

θk
,

where
giθk

= gθk
∩ Li−1

p /L2+k
p , i = 1, 2, . . . , 2 + k.

This filtration generates the graduate space

Ggθk
= g1

θk
⊕ g2

θk
⊕ . . .⊕ gk+2

θk
,

where
giθk

= giθk
/gi+1
θk
, i = 1, 2, . . . , k + 1, gk+2

θk
= gk+2

θk
.

3.2.1. Algebras gθ0. Let θ0 ∈ J0π and p = π(θ0). The algebra gθ0 is a
subalgebra of L0

p/L
2
p. Suppose j2pX = (p, 0, X i

j , X
i
j1j2

) ∈ L0
p/L

2
p and θ0 =

(p, u1, . . . , u4) in the standard coordinates. Then from Proposition 3.1, we
get that gθ0 is described by the system

− 2u1X1
1 + u1X2

2 − u2X2
1 +X2

11 = 0

− 3u1X1
2 − u2X1

1 − 2u3X2
1 −X1

11 + 2X2
12 = 0

− 2u2X1
2 − u3X2

2 − 3u4X2
1 − 2X1

12 +X2
22 = 0

− u3X1
2 + u4X1

1 − 2u4X2
2 −X1

22 = 0 .

(17)

From this system, we obtain the natural filtration of gθ0 and the correspond-
ing graduate space Ggθ0 :

gθ0 ⊃ g2, Ggθ0 = L0
p/L

1
p ⊕ g2 , (18)

where g2 = g2
θ0

is independent of the point θ0 and is defined by the system

X2
11 = 0, X1

11 − 2X2
12 = 0, 2X1

12 −X2
22 = 0, X1

22 = 0 . (19)
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From the last system, we get

dim g2 = 2 , (20)

(g2)(1) = {0} . (21)

Taking into account isomorphism (13), we obtain that the tensors

e1 = 2
∂

∂x1
⊗ (dx1 � dx1) +

∂

∂x2
⊗ (dx1 � dx2) ,

e2 = 2
∂

∂x2
⊗ (dx2 � dx2) +

∂

∂x1
⊗ (dx1 � dx2)

(22)

form the base of the vector space g2.

3.2.2. Algebras gθ1. Let θ1 ∈ J1π, θ0 = π1,0(θ1), and p = π1(θ1). The
algebra gθ1 is a subalgebra of L0

p/L
3
p. It follows from Proposition 3.1 that

gθ1 is described by the system of linear homogeneous algebraic equations

ψiX(θ0) = 0 , D1(ψiX )(θ1) = 0 , D2(ψiX )(θ1) = 0 ,
i = 1, 2, 3, 4 .

From this system, we obtain the natural filtration of gθ1 and the correspond-
ing graduate space Ggθ1 :

gθ1 ⊃ g2
θ1 ⊃ {0} , Ggθ1 = L0

p/L
1
p ⊕ g2 ⊕ {0} ,

Thus the projection
ρ3,2

∣∣
gθ1

: gθ1 −→ gθ0 (23)

is an isomorphism.

3.2.3. Algebras gθ2. Let θ2 ∈ J2π and p = π2(θ2). The algebra gθ2 is a
subalgebra of L0

p/L
4
p. Suppose j4pX = (p, 0, X i

j , . . . , X
i
j1...j4

) ∈ L0
p/L

4
p and

θ2 = (p, ui, uij , u
i
j1j2

) in the standard coordinates. Applying computer al-
gebra, we reduce the system of equations describing the algebra gθ2 , see
Proposition 3.1, to a step-form. As a result, we obtain the natural filtration
of gθ2 and the corresponding graduate space Ggθ2 :

gθ2 ⊃ g2
θ2 ⊃ {0} ⊃ {0} , Ggθ2 = g1

θ2 ⊕ g2 ⊕ {0} ⊕ {0} , (24)

where subalgebra g1
θ2
⊂ L0

p/L
1
p is defined by the system of equations

2F 1 ·X1
1 + F 2 ·X2

1 + F 1 ·X2
2 = 0

F 2 ·X1
1 + F 1 ·X1

2 + 2F 2 ·X2
2 = 0 ,

(25)

and
F 1 = 3u1

22 − 2u2
12 + u3

11

+ 3u4u1
1 − 3u3u1

2 + 2u2u2
2 − u2u3

1 − 3u1u3
2 + 6u1u4

1 ,

F 2 = u2
22 − 2u3

12 + 3u4
11

− 3u1u4
2 + 3u2u4

1 − 2u3u3
1 + u3u2

2 + 3u4u2
1 − 6u4u1

2 .

(26)

From (24) and (25), we get

Proposition 3.2. (1) dim gθ2 = 4 iff
(
F 1(θ2), F 2(θ2)

)
6= 0.

(2) dim gθ2 = 6 iff F 1(θ2) = 0 and F 2(θ2) = 0.
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The conditions F 1 = 0 and F 2 = 0 can be considered as conditions for
the coefficients of equation (1). The following statement is well-known, see
[19], [23], [6], [22], [8], [11], and [26].

Proposition 3.3. The conditions F 1 = 0 and F 2 = 0 are necessary and
sufficient to exists a point transformation reducing equation (1) to the linear
form.

From this proposition, we get

Corollary 3.4. Let E be equation (1). Then it can be reduced to the linear
form by a point transformation iff the isotropy algebra of every 2–jet of the
section SE is 6–dimensional.

From (25) we get the system of equations defining the 1-st prolongation
(g1
θ2

)(1) of the algebra g1
θ2

2F 1 ·X1
11 + 0 ·X1

12 + 0 ·X1
22 + F 2 ·X2

11 + F 1 ·X2
12 + 0 ·X2

22 = 0,

0 ·X1
11 + 2F 1 ·X1

12 + 0 ·X1
22 + 0 ·X2

11 + F 2 ·X2
12 + F 1 ·X2

22 = 0,

F 2 ·X1
11 + F 1 ·X1

12 + 0 ·X1
22 + 0 ·X2

11 + 2F 2 ·X2
12 + 0 ·X2

22 = 0,

0 ·X1
11 + F 2 ·X1

12 + F 1 ·X1
22 + 0 ·X2

11 + 0 ·X2
12 + 2F 2 ·X2

22 = 0.

It is easy to prove now that

dim(g1
θ2)

(1) = 2. (27)

3.2.4. Algebras gθ3. Let θ3 ∈ J3π, p = π3(θ3), and θ3 = (p, ui, uij , . . . , u
i
j1j2j3

)
in the standard coordinates. Applying computer algebra, we reduce the
system of equations describing the algebra gθ3 , see Proposition 3.1, to a
step-form. From the obtained system, we get

Proposition 3.5. dim gθ3 = 0 iff F 3(θ3) 6= 0, where

F 3 = F 2(F 1D1F
2 − F 2D1F

1)− F 1(F 1D2F
2 − F 2D2F

1)

+ (F 1)3u4 − (F 1)2F 2u3 + F 1(F 2)2u2 − (F 2)3u1 .
(28)

The function F 3 is a coefficient of some differential invariant of the action
Γ on J3π. Bellow, we will construct this invariant. First, it was obtained in
a different way by R. Liouville in [19].

3.3. Orbits. In this section we describe some orbits of the actions of the
pseudogroup Γ on the bundles Jkπ, k = 0, 1, 2, 3.

By Orb(θk) we denote the orbit of the action of Γ on Jkπ passing through
θk ∈ Jkπ. It is clear that Γ acts transitively on the base of π. Hence Orb(θk)
can be reconstructed by the intersection Orb(θk) ∩ Jkp π, where Jkp π is the
fiber of πk over an arbitrary point p of the base. Let Γp be the subgroup
of Γ consisting of all transformations preserving p. The subgroup Γp acts
on the fiber Jkp π and Orb(θk) ∩ Jkp π is an orbit of this action. Taking into
account the previous descriptions of the algebras gθ0 , gθ1 , gθ2 , and gθ3 , we
can prove now the following theorem

Theorem 3.6. (1) Jkπ, k = 0, 1, is an orbit of the action of Γ,
(2) J2π is the union of two orbits of the action of Γ, Orb0

2 and Orb2
2.
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(a) Orb0
2 is a generic orbit, which is described by the inequality

(F 1, F 2 ) 6= 0 ,

where F 1 and F 2 are defined by (26).
(b) Orb2

2 is a degenerate orbit of codimension 2, which is described
as a submanifold of J2π by the equations:

F 1 = 0, F 2 = 0 .

(3) J3π is a union of some orbits of the action of Γ. One of these orbits
Orb0

3 is a generic orbit, which is described by the inequality

F 3 6= 0 ,

where F 3 is defined by (28).

4. Spaces Aθk+1

In this section, we introduce a vector space Aθk+1
which is a basic notion

of our approach to construct differential invariants.
Let θk+1 ∈ Jk+1π, p = πk+1(θk+1), and S be a section of π such that

jk+1
p S = θk+1. Then θk+1 is identified with the tangent space to the image

of the section jkS at the point θk = jkpS. We denote this tangent space by
Kθk+1

. Obviously, in the standard coordinates,

Kθk+1
= 〈Dk

1

∣∣
θk
, Dk

2

∣∣
θk
〉,

where Dk
1 and Dk

2 are the operators of total derivatives w.r.t. x1 and x2

respectively, see formula (8).
Now we can introduce the vector space Aθk+1

,

Aθk+1
=

{
j2+k
p X ∈Wp/L

2+k
p

∣∣ X(k)
θk

∈ Kθk+1

}
. (29)

From this definition and (7), we get

Proposition 4.1. Let j2+k
p X = (p,Xi, X i

j , . . . , X
i
j1...j2+k

) in the standard
coordinates. Then j2+k

p X ∈ Aθk+1
iff (Xi, X i

j , . . . , X
i
j1...j2+k

) is a solution of
the system of linear homogeneous algebraic equations(

Dσ(ψiX )
)
(θk+1) = 0 , i = 1, 2, 3, 4 , 0 ≤ |σ| ≤ k .

It follows from definition (16) of the isotropy algebra gθk
that

gθk
⊂ Aθk+1

∀ θk+1 ∈ π−1
k+1,k(θk) ∀ θk ∈ Jkπ .

From the definition of Aθk+1
, we get that

ρk+2,k+1(Aθk+1
) ⊂ Aθk

.

Let f be a point transformation of the base of π and let p be a point of
the domain of f . The tangent map f∗ : Tp → Tf(p) generates the map

jk+3
p f : Wp/L

k+2
p −→Wf(p)/L

k+2
f(p) , jk+3

p f : jk+2
p X 7→ jk+2

f(p)

(
f∗(X)

)
.

Proposition 4.2. Let θk+1 be a point of the domain of f (k+1). Then

jk+3
p f(Aθk+1

) = Af (k+1)(θk+1) .
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Proof. Let X be a vector field in the base of π and let ϕt be the flow of X.
Then the condition jk+2

p X ∈ Aθk+1
means that X(k)

θk
= d/dt

(
ϕ

(k)
t (θk)

)∣∣
t=0
∈

Kθk+1
. It follows that

d

dt
(f ◦ ϕt ◦ f−1)(k)

(
f (k)(θk)

)∣∣
t=0

=
d

dt
f (k)

(
ϕ

(k)
t (θk)

)∣∣
t=0

= f
(k)
∗ (X(k)

θk
) .

It is clear that f (k)
∗ (Kθk+1

) = Kf (k+1)(θk+1) for every point θk+1 of the do-

main of f (k+1). Therefore f (k)
∗ (X(k)

θk
) ∈ Af (k+1)(θk+1) Thus jk+3

p f(jk+2
p X) ∈

Af (k+1)(θk+1). �

Consider the restriction of the bilinear map [ · , · ] : Wp/L
k+2
p ×Wp/L

k+2
p →

Wp/L
k+1
p defined by (11) to Aθk+1

×Aθk+1
.

Proposition 4.3.
[Aθk+1

, Aθk+1
] ⊂ Aθk

.

Proof. Suppose j2+k
p X, j2+k

p Y ∈ Aθk+1
. Then

[ j2+k
p X, j2+kp Y ] = j2+k−1

p [X ,Y ] .

It is obvious that

j2+k−1
p [X ,Y ] ∈ Aθk

iff [X, Y ](k−1)
θk−1

∈ Kθk
,

where θk = πk+1,k(θk+1) and θk−1 = πk,k−1(θk). Suppose

X = X1 ∂

∂x1
+X2 ∂

∂x2
, Y = Y 1 ∂

∂x1
+ Y 2 ∂

∂x2
.

Then

[X, Y ](k−1)
θk−1

= (π∞,k−1)∗
(
[X, Y ](∞)

θ∞

)
= (π∞,k−1)∗

(
[X(∞), Y (∞) ]θ∞

)
= (π∞,k−1)∗

(
[XrDr + �ψ(X), Y

1D1 + Y 2D2 + �ψ(Y ) ]θ∞
)
,

where θ∞ ∈ (π∞,k+1)−1(p). Taking into account the well known relations,
see [14],

[D1, D2 ] = [Dj , �ψ ] = 0, j = 1, 2, [�φ, �ψ ] = �{φ,ψ} ,

where {φ, ψ} = �φ(ψ)−�ψ(φ), we get

[X, Y ](k−1)
θk−1

= (π∞,k−1)∗
(
(XjY i

j − Y jXi
j)Di + [�ψ(X), �ψ(Y ) ]

)∣∣
θk−1

=
(
(XjY i

j − Y jXi
j)D

k−1
i + �k−1

{ψ(X),ψ(Y )}
)∣∣
θk−1

.

From (4) and (6), we get

{ψ(X), ψ(Y )}i = ψi
′
(X)

∂ψi(Y )
∂ui′

+Dj(ψi
′
(X))

∂ψi(Y )
∂ui

′
j

− ψi
′
(Y )

∂ψi(X)
∂ui′

−Dj(ψi
′
(Y ))

∂ψi(X)
∂ui

′
j

.

From Proposition 4.1, we have(
Dσ(ψiX )

)
(θk+1) = 0 and

(
Dσ(ψiY )

)
(θk+1) = 0

i = 1, 2, 3, 4 , 0 ≤ |σ| ≤ k .
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It follows that �(k−1)
{ψ(X),ψ(Y )}

∣∣
θk−1

= 0. Hence,

[X, Y ](k−1)
θk−1

=
(
(XjY i

j − Y jXi
j)D

k−1
i

)∣∣
θk−1

.

This means that [ j2+k
p X, j2+k

p Y ] ∈ Aθk
. �

4.1. Horizontal subspaces. Let θk+1 ∈ Jk+1π, θk = πk+1,k(θk+1), and
p = πk+1(θk+1). A 2–dimensional subspace H ⊂ Aθk+1

is called horisontal
if the natural projection

ρk+2,0

∣∣
H

: H −→ Tp, ρk+2,0 : jk+2
p X 7→ Xp,

is an isomorphism. Let H be a horizontal subspace of Aθk+1
, then

Aθk+1
= H ⊕ gθk

.

Every two horizontal subspaces H, H̃ ⊂ Aθk+1
define the linear map

fH,H̃ : Tp → gθk
, fH,H̃ : X 7→ (ρk+2,0|H)−1(X)− (ρk+2,0|H̃)−1(X) .

On the other hand, let H ⊂ Aθk+1
be a horizontal subspace and let f :

Tp → gθk
be a linear map. Then there exists a unique horizontal subspace

H̃ ⊂ Aθk+1
such that f = fH,H̃ . This subspace is spanned by the k + 2–jets

(ρk+2,0|H)−1(X)− f(X), X ∈ Tp.
Every horizontal subspace H ⊂ Aθk+1

generates the 2–form ωH on Tp
with values in Aθk

ωH(Xp, Yp) = [ (ρk+2,0

∣∣
H

)−1(Xp), (ρk+2,0

∣∣
H

)−1(Yp) ] , ∀Xp, Yp ∈ Tp. (30)

From Proposition 4.2 we obviously get the following

Proposition 4.4. Let f be a point transformation of the base of π and let
θk+1 be a point of the domain of the lifted transformation f (k+1). Then

(1) If H is a horizontal subspace of Aθk+1
, then jk+3

p f(H) is a horizontal
subspace of Af (k+1)(θk+1).

(2) jk+2
f(p)f

(
ωH(Xp, Yp)

)
= ωjk+3

p f(H)

(
f∗(Xp), f∗(Yp)

)
, ∀Xp, Yp ∈ Tp.

5. Differential invariants on J2π

5.1. Horizontal subspaces of Aθ2. Let θ2 ∈ J2π, θ1 = π2,1(θ2) and p =
π2(θ2). Consider the space Aθ2 . It is a subspace of the space Wp/L

3
p. From

the system of equations describing the space Aθ2 , see Proposition 4.1, we
obtain the natural filtration of Aθ2 and the corresponding graduate space
GAθ2 :

Aθ2 ⊃ gθ1 ⊃ g2
θ1 ⊃ {0} , GAθ2 = Tp ⊕ L0

p/L
1
p ⊕ g2 ⊕ {0},

where g2 is described by (19).

Proposition 5.1. There are horizontal subspaces H ⊂ Aθ2 satisfying the
condition

ρ2,1

( [
j3pX , j3pY

] )
= 0 ∀ j3pX, j3pY ∈ H . (31)
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Proof. First step. Let us prove that there are horizontal subspaces H ⊂ Aθ2

satisfying the condition

ρ2,0

(
[ j3pX , j3pY ]

)
= 0 ∀ j3pX, j3pY ∈ H (32)

Let H be an arbitrary horizontal subspace of Aθ2 . Then the formula

tH(Xp, Yp) = ρ2,0

(
ωH(Xp, Yp)

)
, ∀Xp, Yp ∈ Tp ,

defines the tensor tH ∈ Tp ⊗ (∧2T ∗p ). Let f : Tp → gθ1 be a linear map and
let H̃ be a unique horizontal subspace of Aθ2 such that fH,H̃ = f . Then for
the corresponding tensor tH̃ , we have

tH̃(Xp, Yp) = ρ2,0

(
[ j3pX − f(Xp) , j3pY − f(Yp) ]

)
= tH(Xp, Yp)− ρ2,0

(
[ j3pX , f(Yp) ]− [ j3pY , f(Xp) ]

)
= tH(Xp, Yp)− ∂1,1(f ′)(Xp, Yp) ,

where f ′ = ρ3,1 ◦ f ∈ L0
p/L

1
p ⊗ T ∗p and the operator ∂1,1 : L0

p/L
1
p ⊗ T ∗p →

Tp ⊗ ∧2T ∗p is defined by (15)

∂1,1(f ′)(Xp, Yp) = [Xp, f
′(Yp) ]− [Yp, f ′(Xp) ] , ∀Xp, Yp ∈ Tp .

It remains to prove that the linear map f can be chosen such that tH̃ = 0. To
this end consider the spaces L0

p/L
1
p and L1

p/L
2
p. They satisfy (12). Therefore

we have complex (14) constructed for these spaces

0 → L1
p/L

2
p

∂2,0−−→ L0
p/L

1
p ⊗ T ∗p

∂1,1−−→ Tp ⊗ ∧2T ∗p → 0 .

It is easy to check that this complex is exact. It follows that the linear map
f can be chosen such that tH̃ = 0. From g1

θ1
= L0

p/L
1
p and L1

p/L
2
p 6= {0}, we

get that there are many horizontal subspaces of Aθ2 satisfying (32).
In the standard coordinates, an arbitrary horizontal subspace H ⊂ Aθ2

has the form H =
{
j30X = (Xi, hij,rX

r, hij1j2,rX
r, f ij1j2j3,rX

r )
}
. Obvi-

ously, H satisfies (32) iff

hij,r = hir,j ∀ i, j, r .

Second step. Let H be an arbitrary horizontal subspace of Aθ2 satisfying
(32), let f : Tp → g2

θ1
be a linear map, and let H̃ be a unique horizontal

subspace of Aθ2 satisfying the condition fH,H̃ = f . Then obviously,

ρ3,1( H̃ ) = ρ3,1(H ) . (33)

On the other hand, if H̃ is an arbitrary horizontal subspace of Aθ2 satisfying
(33), then fH,H̃ ∈ g2

θ1
⊗ T ∗p . It is clear now that there are many horizontal

subspaces H̃ ⊂ Aθ2 satisfying (33). All these subspaces satisfy (32). Let us
prove that there exists a unique subspace H̃ satisfying (31) among horizontal
subspaces satisfying (33). Taking into account (32) and (18), we define the
tensor tH ∈ L0

p/L
1
p ⊗ (∧2T ∗p ) by the formula

tH(Xp, Yp) = ρ2,1

(
ωH(Xp, Yp)

)
.
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Let H̃ be a horizontal subspace satisfying (33). Then

tH̃(Xp, Yp) = tH(Xp, Yp)− ρ2,1

(
[ j3pX , f(Yp) ]− [ j3pY , f(Xp) ]

)
= tH(Xp, Yp)− ∂2,1(f ′)(Xp, Yp) ,

where f ′ = ρ3,2 ◦ fH,H̃ ∈ g2⊗ T ∗p and the operator ∂2,1 : g2⊗ T ∗p → L0
p/L

1
p⊗

∧2T ∗p is defined by (15)

∂2,1(f ′)(Xp, Yp) = [Xp, f
′(Yp) ]− [Yp, f ′(Xp) ] , ∀Xp, Yp ∈ Tp .

Now, from the exactness of the following complex (14)

0 = (g2)(1) ∂3,0−−→ g2 ⊗ T ∗p
∂2,1−−→ L0

p/L
1
p ⊗ ∧2T ∗p → 0 ,

we obtain that there exists a unique horizontal subspace H̃ ⊂ Aθ2 satisfying
(33) and (31).

Thus we proved that there are many horizontal subspaces of Aθ2 satisfying
(31). �

The following obvious statement is important to construct differential
invariants.

Proposition 5.2. Suppose f is a point transformation of the base of π,
θ2 is a point of the domain of f (2), and H is a horizontal subspace of Aθ2

satisfying (31). Then the horizontal subspace j4pf(H) of Af (2)(θ2) satisfies
(31) too.

5.2. The obstruction to linearization. Let H be an arbitrary horizontal
subspace of Aθ2 satisfying (31), let ωH be its 2–form defined by (30), and
let p = π2(θ2) Then, obviously,

ωH ∈ g2 ⊗ (∧2T ∗p ) .

Theorem 5.3. The 2–form ωH is independent of the choice of a horizontal
subspace H ⊂ Aθ2 satisfying (31).

Proof. See section 9.2 of Appendix. �

Put
ωθ2 = ωH ,

where H is an arbitrary horizontal subspace of Aθ2 satisfying (31). From
theorem 5.3 we get that ωθ2 is well defined. Thus for every point θ2 ∈ J2π,
we define in the natural way the 2–form ωθ2 on Tp with values in g2. This
means that the following statement holds.

Theorem 5.4. The field of tensors on J2π

ω2 : θ2 7−→ ωθ2 .

is a differential invariant of the action of Γ on the bundle π.

We can consider ω2 as a horizontal differential 2–form on J2π with values
in g2:

ω2(X,Y ) = ωθ2
(
(π2)∗(X), (π2)∗(Y )

)
,

where X and Y are tangent vectors to J2π at the point θ2.
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In the standard coordinates, ω2 is expressed in following way, see section
9.3 of Appendix,

ω2 =
(
F 1

(
2
∂

∂x1
⊗ (dx1 � dx1) +

∂

∂x2
⊗ (dx1 � dx2)

)
+ F 2

(
2
∂

∂x2
⊗ (dx2 � dx2) +

∂

∂x1
⊗ (dx1 � dx2)

))
⊗ (dx1 ∧ dx2) , (34)

where F 1 and F 2 are defined by (26).
Let E be equation (1) and let SE be the corresponding section of π. By

ω2
E we denote the restriction of ω2 to the image of the section j2SE. From

Proposition 3.3, we get the following statement.

Theorem 5.5. The equation E can be reduced to the linear form by a point
transformation iff ω2

E = 0.

Thus the differential invariant ω2 is a unique obstruction to linearization
of equations (1) by point transformations.

5.3. Derived invariants. Applying operations of tensor algebra to the ten-
sor ωθ2 on Tp, we can obtain in the natural way new tensors on Tp. Indeed,
applying the operation of contraction

Tp ⊗ (T ∗p � T ∗p )⊗ (∧2T ∗p ) −→ T ∗p ⊗ (∧2T ∗p ) , (tijk,rs) 7→ (tmmk,rs) ,

to the tensor (2/5)ωθ2 , we get the tensor

αθ2 = (F 1(θ2)dx1 + F 2(θ2)dx2)⊗ (dx1 ∧ dx2) .

Thus the tensor field
α2 : θ2 7−→ αθ2

on J2π is a differential invariant of the action of Γ on π.
Taking into account that dimTp = 2, we obtain that the contraction

Tp ⊗ (T ∗p ∧ T ∗p ) −→ T ∗p , (tijk) 7→ (tmmk) ,

is an isomorphism. Therefore the contraction

Tp ⊗ (∧2T ∗p )⊗ (∧2T ∗p ) −→ T ∗p ⊗ (∧2T ∗p ) , (tir1s1,r2s2) 7→ (tmms1,r2s2) .

is isomorphism also. It is easy to check that the pseudovector of weight 2

βθ2 = (F 2(θ2)
∂

∂x1
− F 1(θ2)

∂

∂x2
)⊗ (dx1 ∧ dx2)2 (35)

is the inverse image of the tensor (1/2)αθ2 under this isomorphism. This
means that βθ2 is defined in the natural way. Thus the field of pseudovectors
on J2π

β2 : θ2 7−→ βθ2

is a differential invariant of the action of Γ on π.

6. Differential invariants in J3π

In this section, we construct differential invariants on (π3,2)−1(Orb0
2).
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6.1. Spaces Aθ3. Let θ3 ∈ (π3,2)−1(Orb0
2), θ2 = π3,2(θ3) and p = π2(θ2).

Consider the space Aθ3 . It is a subspace of the space Wp/L
4
p. From the

system of equations describing the space Aθ3 , see Proposition 4.1, we obtain
the natural filtration of Aθ3 and the corresponding graduate space GAθ3 :

Aθ3 ⊃ gθ2 ⊃ g2
θ2 ⊃ {0} ⊃ {0} , GAθ3 = Tp ⊕ g1

θ2 ⊕ g2 ⊕ {0} ⊕ {0}, (36)

where g1
θ2

is described by (25) and g2 is described by (19). In addition, we
obtain the following statement

Proposition 6.1. In the standard coordinates, components Xi and Xi
j of

elements of Aθ3 are connected by the equations

2F 1 ·X1
1 + F 2 ·X2

1 + F 1 ·X2
2 = −D1F

1 ·X1 −D2F
1 ·X2

F 2 ·X1
1 + F 1 ·X1

2 + 2F 2 ·X2
2 = −D1F

2 ·X1 −D2F
2 ·X2,

(37)

where F 1 and F 2 are defined by (26)

Proposition 6.2. There are horizontal subspaces H ⊂ Aθ3 satisfying the
condition

ρ3,1

( [
j4pX , j4pY

] )
= 0 ∀ j4pX, j4pY ∈ H . (38)

Proof. First step. Show that there exist horizontal subspaces H ⊂ Aθ3

satisfying the condition

ρ3,0

( [
j4pX , j4pY

] )
= 0 ∀ j4pX, j4pY ∈ H (39)

To this end consider two arbitrary horizontal subspaces H and H̃ of Aθ3 .
They generate the linear map fH,H̃ ∈ gθ2 ⊗T ∗p . Then ρ4,1 ◦ fH,H̃ ∈ g1

θ2
⊗T ∗p .

Now the existence of horizontal subspaces satisfying condition (39) follows
from (27) and the exact sequence

0 → (g1
θ2)

(1) ∂2,0−−→ g1
θ2 ⊗ T ∗p

∂1,1−−→ Tp ⊗ ∧2T ∗p → 0.

Second step. Let H be an arbitrary horizontal subspace of Aθ3 satisfying
(39), let f : Tp → g2

θ2
be a linear map, and let H̃ be a unique horizontal

subspace of Aθ3 satisfying the condition fH,H̃ = f . Then obviously,

ρ4,1( H̃ ) = ρ4,1(H ) . (40)

On the other hand, if H̃ is an arbitrary horizontal subspace of Aθ3 satisfying
(40), then fH,H̃ ∈ g2

θ2
⊗ T ∗p . It is clear now that there are many horizontal

subspaces H̃ ⊂ Aθ3 satisfying (40). From (36), we get that ρ4,2 ◦ fH,H̃ ∈
g2 ⊗ T ∗p . Finally, from the exact sequence

0 = (g2)(1) ∂3,0−−→ g2 ⊗ T ∗p
∂2,1−−→ (L0

p/L
1
p)⊗ ∧2T ∗p → 0 ,

we obtain that there exists a unique horisontal subspace satisfying (38)
among subspaces H̃ satisfying (40). �

Let H be a horizontal subspace of Aθ3 satisfying (38) and let j4pX, j
4
pY ∈

H. Then [j4pX, j
4
pY ] ∈ g2

θ1
. Obviously, ρ3,2([j4pX, j

4
pY ]) is element of g2 and

it is equal to ω2(X(2)
θ2
, Y

(2)
θ2

). It follows from (23) that this element of g2

defines [j4pX, j
4
pY ] uniquely. Thus we get the following
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Remark 6.3. The bracket between vectors of a horizontal subspace of Aθ3

satisfying (38) does not lead to a new differential invariant differing of ω2.

6.2. Invariant form ω3. Taking into account the previous remark, we will
investigate the bracket between vectors of a horizontal subspace H ⊂ Aθ3

and elements of the algebra gθ2 to construct new differential invariants.
To minimize the arbitrariness in our constructions, we will consider a

horizontal subspace H satisfying (38) and the element [j4pX, j
4
pY ] ∈ g2

θ1
⊂

gθ1 , where j4pX, j
4
pY ∈ H.

Let j4pU, j
4
pZ ∈ H, then w =

[
j3pZ, [j

4
pX, j

4
pY ]

]
∈ gθ0 and [j2pU,w] ∈

Wp/L
1
p. There exists a unique vector j4pZ̃ ∈ H such that Z̃p = ρ1,0([j2pU,w]).

Then [j2pU,w]− j1pZ̃ is element of L0
p/L

1
p. Thus the formula

tH(Xp, Yp, Zp, Up) = [j2pU,w]− j1pZ̃ ∀Up, Zp, Xp, Yp ∈ Tp
defines the tensor

tH ∈ (Tp ⊗ T ∗p )⊗ T ∗p ⊗ T ∗p ⊗ (T ∗p ∧ T ∗p ) .

This tensor depends on the choice of a horizontal subspace H satisfying (38).
We transform this tensor to obtain a new tensor independent of this choice.
To this end consider tH in detail.

Lemma 6.4.
tH ∈ Tp ⊗ (T ∗p � T ∗p � T ∗p )⊗ (T ∗p ∧ T ∗p )

Proof. See section 9.4 of Appendix �

Recall that the ideal g2 = gθ0 ∩ (L1
p/L

2
p) of the isotropy algebra gθ0 is

defined by (19). It can be considered as a subspace of Tp⊗ (T ∗p �T ∗p ). There
exists a natural projection

µ : Tp ⊗ (T ∗p � T ∗p ) −→ g2 , µ : (Xi
jk) 7→

( 1
3

(δij X
r
kr + δikX

r
jr)

)
,

where δij is the Kronecker symbol. This projection generates the natural
projection

µ̃ : Tp ⊗ (T ∗p � T ∗p )⊗ T ∗p ⊗ (T ∗p ∧ T ∗p ) −→ g2 ⊗ T ∗p ⊗ (T ∗p ∧ T ∗p ).

Taking into account that

Tp ⊗ (T ∗p � T ∗p � T ∗p )⊗ (T ∗p ∧ T ∗p ) ⊂ Tp ⊗ (T ∗p � T ∗p )⊗ T ∗p ⊗ (T ∗p ∧ T ∗p ),

we can consider the tensor µ̃(tH) ∈ g2 ⊗ T ∗p ⊗ (T ∗p ∧ T ∗p ) as a 1-form with
values in g2 ⊗ (T ∗p ∧ T ∗p ). Then the contraction(

Tp ⊗ (T ∗p ∧ T ∗p )2
) ((

g2 ⊗ (T ∗p ∧ T ∗p )
)
⊗ T ∗p

)
⊂ g2 ⊗ (T ∗p ∧ T ∗p )3 ,

(tir1s1r2s2) (pijk,r3s3,l) = (tmr1s1r2s2p
i
jk,r3s3,m) ,

defines the new tensor

ω3
H = βθ2 µ̃(tH) ∈ g2 ⊗ (T ∗p ∧ T ∗p )3,

where βθ2 ∈ Tp ⊗ (T ∗p ∧ T ∗p )2 and is defined by (35).

Theorem 6.5. The tensor ω3
H is independent of the choice of a horizontal

subspace H ⊂ Aθ3 satisfying (38).
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Proof. See section 9.5 of Appendix �

By ωθ3 we denote the tensor 3ω3
H . From the proof of Theorem 6.5, we have

that ωθ3 is described by the following formula in the standard coordinates :

ωθ3 =
(
Ψ1(θ3) · e1 + Ψ2(θ3) · e2

)
⊗ (dx1 ∧ dx2)3,

where e1 and e2 are generators of g2 defined by (22),

Ψ1(θ3) = 3(ω3
H)212/(λ

3) = −(F 1)2u2 + 2F 1F 2u1 − 3(F 2)2u0

− F 1F 1
y + 4F 1F 2

x − 3F 1
xF

2,

Ψ2(θ3) = 3(ω3
H)112/(λ

3) = −3(F 1)2u3 + 2F 1F 2u2 − (F 2)2u1

+ 3F 1F 2
y − 4F 1

yF
2 + F 2F 2

x ,

and θ3 = (xj , ui, . . . , uij1j2j3). It is clear that the tensor ωθ3 is defined
by the point θ3 ∈ (π3,2)−1(Orb0

2) ⊂ J3π in the natural way. Therefore, the
map

ω3 : θ3 7−→ ωθ3 ∀ θ3 ∈ (π3,2)−1(Orb0
2) (41)

is a differential invariant.

6.3. Derived invariants. Applying the contraction

Tp ⊗ (T ∗p � T ∗p )⊗ (T ∗p ∧ T ∗p )3 −→ T ∗p ⊗ (T ∗p ∧ T ∗p )3 ,

(tijk,r1s1r2s2r3s3) 7→ (tmmk,r1s1r2s2r3s3) ,

to ωθ3 , we obtain in the natural way the new tensor at the point θ3 ∈
(π3,2)−1(Orb0

2)

αθ3 = (Ψ1dx1 + Ψ2dx2)⊗ (dx1 ∧ dx2)3. (42)

Therefore the field of tensors on (π3,2)−1(Orb0
2)

α3 : θ3 7−→ αθ3

is a differential invariant of the action of Γ on π.
The contraction of βθ2 and αθ3 , where θ2 = π3,2(θ3), gives in the natural

way the next tensor

νθ3 =
1
3
(βθ2 αθ3) = F 3(dx1 ∧ dx2)5, (43)

where F 3 is defined by (28). Therefore the tensor field on (π3,2)−1(Orb0
2)

ν : θ3 7−→ νθ3

is a differential invariant of the action of Γ on π. First this invariant was
obtained by R. Liouville in [19].

The contraction Tp ⊗ (T ∗p ∧ T ∗p ) → T ∗p is an isomorphism. Therefore the
contraction

Tp ⊗ (T ∗p ∧ T ∗p )⊗ (T ∗p ∧ T ∗p )3 −→ T ∗p ⊗ (T ∗p ∧ T ∗p )3

is an isomorphism too. The tensor

βθ3 = (Ψ2 ∂

∂x1
−Ψ1 ∂

∂x1
)⊗ (dx1 ∧ dx2)4
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is the inverse image of the tensor αθ3 ∈ T ∗p ⊗ (T ∗p ∧ T ∗p )3. Therefore the
tensor field on (π3,2)−1(Orb0

2)

β3 : θ3 7−→ βθ3

is a differential invariant of the action of Γ on π.
For every point θ3 ∈ Orb0

3, the tensors νθ3 , βθ2 , and βθ3 , where θ2 =
π3,2(θ3), generate in the natural way the vectors ξ1θ3

and ξ2θ3
:

ξ1θ3
=

1
(F 3)2/5

(F 2 ∂

∂x1
−F 1 ∂

∂x2
), ξ2θ3

=
1

(F 3)4/5
(Ψ2 ∂

∂x1
−Ψ1 ∂

∂x2
) (44)

Therefore the fields

ξ31 : θ3 7−→ ξ1θ3
, ξ32 : θ3 7−→ ξ2θ3

, ∀ θ3 ∈ Orb0
3

are differential invariants of the action of Γ on π.

Proposition 6.6. For every point θ3 ∈ Orb0
3, the vectors ξ1θ3

, ξ2θ3
of Tp

are linearly independent.

Proof. It is easy to calculate that −F 2Ψ1 + F 1Ψ2 = −3F 3 6= 0 for every
θ3 ∈ Orb0

3. �

Now we can define the vector fields ξ1 and ξ2 on (π∞,3)−1(Orb0
3) by the

formulas

ξ1 =
1

(F 3)2/5
(F 2D1 − F 1D2), ξ2 =

1
(F 3)4/5

(Ψ2D1 −Ψ1D2), (45)

where Dj is the operator of total derivative w.r.t. xj , j = 1, 2, see (5).
It is clear that these vector fields are invariant w.r.t. every lifted point
transformation f (∞). This means that ξ1 and ξ2 are differential invariants
of the action of Γ on π.

It follows from the last proposition that the vector fields ξ1 and ξ2 are
linear independent in every point θ∞ ∈ (π∞,3)−1(Orb0

3).

7. Scalar differential invariants

7.1. Algebra of scalar differential invariants. Recall that a function
defined in Jkπ and invariant w.r.t. all lifted point transformations f (k) is a
scalar differential invariant of order k.

In this section, we construct scalar differential invariants in the bundles
(πk,3)−1(Orb0

3) ⊂ Jkπ, k > 3.
By Ak we denote algebra of all scalar differential invariants of order k in

(πk,3)−1(Orb0
3), k > 3. It is clear that if I ∈ Ak, then (πk+1,k)∗(I) ∈ Ak+1.

We will identify these invariants. Thus we have the filtration

A0 ⊂ A1 ⊂ . . . ⊂ Ak ⊂ . . .

Clearly, that every function of k-order scalar differential invariants is a
k-order scalar differential invariant. Let { I1, . . . , INk } be a maximal collec-
tion of k-order functionally independent scalar differential invariants. Then
this collection generates Ak, that is every invariant I ∈ Ak is some function
of I1, . . . , INk .
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Let θk be a generic point of Jkπ and let p = πk(θk). Then obviously the
following formula holds.

dim Jkπ = dim(Wp/L
k+2
p )− dim gθk

+Nk . (46)

In section 3.2, we obtained the following results for a generic point θk:
dim gθk

= 6 if k = 0, 1, dim gθk
= 4 if k = 2, and dim gθk

= 0 if k ≥ 3.
Using formula (46), we get now the following table

k dim Jkπ dim(Wp/L
k+2
p ) dim gθk

Nk

0 8 14 6 0
1 16 22 6 0
2 28 32 4 0
3 44 44 0 0
4 64 58 0 6
5 88 74 0 14
. . . . . . . . . . . . . . .
k 2k2 + 6k + 8 k2 + 7k + 14 0 k2 − k − 6

From this table, we get

Proposition 7.1. (1) The algebra Ak, 0 ≤ k ≤ 3, is trivial, that is it
consists of constants.

(2) The algebra Ak, k ≥ 4, is generated by k2 − k− 6 functionally inde-
pendent scalar differential invariants of order k. In particular, A4

is generated by 6 independent invariants and A5 is generated by 14
independent invariants.

7.2. Generators. Let θ4 be a point of (π4,3)−1(Orb0
3) ⊂ J4π, θ3 = π4,3(θ4)

and p = π4(θ4). Consider the space Aθ4 . From Proposition 3.5, we have that
gθ3 = {0}. On the other hand, from system defining Aθ4 , see Proposition 4.1,
we have that Aθ4 contains horizontal subspaces. Thus, Aθ4 is a horizontal
subspace. By ωθ4 we denote the 2–form ωAθ4

on Tp with values in Aθ3

defined by formula (30). Then ρ4,0 ◦ ωθ4 is a 2–form on Tp with values in
Tp. Decomposing the vector ρ4,0 ◦ωθ4( ξ1θ3

, ξ2θ3
) over the base { ξ1θ3

, ξ2θ3
}

of Tp
ρ4,0 ◦ ωθ4( ξ1θ3

, ξ2θ3
) = I1(θ4)ξ1θ3

+ I2(θ4)ξ2θ3
,

we obtain the numbers I1(θ4) and I2(θ4) in the natural way. Thus the
functions

I1 : θ4 7→ I1(θ4), I2 : θ4 7→ I2(θ4)

are scalar differential invariants on (π4,3)−1(Orb0
3) ⊂ J4π.

Next scalar invariants can be obtained in the following way. Let j4pZ
be the vector of the horizontal subspace ρ5,4(Aθ4) of Aθ3 such that Zp =
ρ4,0

(
ωθ4(ξ1θ3

, ξ2θ3
)
)
. Then ωθ4(ξ1θ3

, ξ2θ3
) − j4pZ ∈ gθ2 . It follows that

ρ4,1

(
ωθ4(ξ1θ3

, ξ2θ3
) − j4pZ

)
∈ Tp ⊗ T ∗p . By ∆ we denote this element of

Tp ⊗ T ∗p . We have that ∆(ξ1θ3
) and ∆(ξ2θ3

) are vectors of Tp. The decom-
positions of these vectors over the base { ξ1θ3

, ξ2θ3
}

∆(ξ1θ3
) = I3(θ4)ξ1θ3

+ I4(θ4)ξ2θ3
, ∆(ξ2θ3

) = I5(θ4)ξ1θ3
+ I6(θ4)ξ2θ3
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give the numbers Ij(θ4), j = 3, 4, 5, 6. Clearly that these numbers are
constructed in the natural way. Thus the functions

Ij : θ4 7→ Ij(θ4), j = 3, 4, 5, 6,

are new scalar differential invariants on (π4,3)−1(Orb0
3) ⊂ J4π. The following

theorem can be proved by direct calculations with the help of computer
algebra.

Theorem 7.2. The collection { I1, I2, . . . , I6 } is a maximal collection of
functionally independent invariants of the algebra A4.

It is clear that if I is a k-order scalar differential invariant, then its Lie
derivative ξj(I) along the invariant vector field ξj , j = 1, 2, is a k + 1-order
scalar differential invariant. The following theorem can be proved also by
direct calculations with the help of computer algebra.

Theorem 7.3. The algebra A5 is generated by the invariants Ik, ξj(Ik),
j = 1, 2, k = 1, 2, . . . , 6. In particular, the collection of 14 invariants:
Ik, ξ1(Ik), k = 1, 2, . . . , 6, ξ2(I5), and ξ2(I6) is a maximal collection of
functionally independent invariants of the algebra A5.

8. The equivalence problem

8.1. Suppose E1 and E2 are equations of form (1), ai1 and ai2, i = 0, 1, 2, 3,
are the coefficients of these equations respectively. Consider equations (2)
describing transformation of coefficients of equations (1) under point trans-
formations. From these equations, we obtain the system of 2–order PDEs
for a point transformation f

Fm( f i, f ij , f
i
jk ) = am1 − Φm

(
a0

2(f
1, f2), . . . , a3

2(f
1, f2), f ij , f

i
jk

)
= 0 ,

f1
1 f

2
2 − f2

1 f
1
2 6= 0 m = 0, 1, 2, 3 .

We denote this system by Y(E1,E2). The equations E1 and E2 are locally
equivalent iff Y(E1,E2) has a solution.

Let τ : R2 × R2 −→ R2 be a product bundle, τk : Jkτ −→ R2 the bundle
of k–jets of sections of τ , and τk1,k2 : Jk1τ −→ Jk2τ , k1 > k2, the natural
projection sending a k1–jet to its k2–jet. We considered the system Y(E1,E2)
as a submanifold of J2τ and we consider a solution f of Y(E1,E2) as a section
f of τ such that the image of the section j2f of τ2 belongs to Y(E1,E2).

Consider an arbitrary k–order PDE system Y ⊂ Jkτ . Let y ∈ Y and
y′ = τk,k−1(y). The tangent space to Y ∩ τ−1

k,k−1(y
′) at the point y is called

the symbol of Y at the point y and is denoted by Smbly Y. It is easy to prove
that for every point y ∈ Y(E1,E2), the symbol Smbly Y(E1,E2) coincides with
the vector space g2 describing by (19).

The r-th prolongation, r = 1, 2, . . ., of Y(E1,E2) is defined as the subman-
ifold Y(E1,E2)(r) ⊂ J2+rτ describing by the system of equations

DσF
m = 0, m = 0, 1, 2, 3, 0 ≤ |σ| ≤ r,

f1
1 f

2
2 − f2

1 f
1
2 6= 0 ,

where Dσ = D(j1,j2,...,j|σ|) = Dj1 ◦ · · · ◦Dj|σ| and Dj is the operator of total
derivative w.r.t. xj in the bundle J∞τ . Let j2+rp f ∈ Y(E1,E2)(r). Then
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f (r)(jrpSE1) = jrf(p)SE2 . Taking into account that the r–jet f (r)(jrpSE1) is
defined by the 2 + r–jet j2+r

p f , we will say that 2 + r–jet j2+rp f transforms
the r–jet jrpSE1 to the r–jet jrf(p)SE2 .

It is easy to prove that for every point y ∈ Y(E1,E2)(r), the symbol
Smbly Y(E1,E2)(r) is equal to { 0 } if r ≥ 1.

The following theorem holds, see [16].

Theorem 8.1. Let Y ⊂ Jkτ be a PDE system. Assume that
(1) Smbly Y = { 0 } for every y ∈ Y,
(2) τk+1,k

∣∣
Y(1) : Y(1) → Y is surjective.

Then for every y ∈ Y there is a solution f of Y such that jkpf = y, p = τk(y).

8.2. Let E be an equation of form (1) and SE be the section of π identified
with this equation. We can consider the restrictions of a scalar differential
invariant I of order k to the image of the section jkSE as a function of x1 and
x2 in the domain of SE. This function is called a scalar differential invariant
of order k of the equation E and is denoted by IE. By AkE we denote the
algebra of all scalar differential invariants of order k of the equation E.

Let p be a point of the domain of SE. We say that p is regular if there
exists a neighborhood Up of p such that the image of the restriction j3SE|Up

belongs to Orb0
3. We will say that the neighborhood Up is regular too. We

will solve the equivalence problem in neighborhoods of regular points.
Let p be a regular point of E. Then it is possible three cases:
(1) In some neighborhood of p, invariants InE , n = 1, 2, . . . , 6, are con-

stants.
(2) Among the invariants I1

E, . . . , I
6
E, there is a nontrivial invariant gen-

erating A5
E in some neighborhood of p.

(3) Among the invariants InE , (ξj(In))E, n = 1, 2, . . . , 6, j = 1, 2, there
are two functionally independent invariants in some neighborhood
of p.

In the first case, the equivalence problem is solved by

Theorem 8.2. Suppose E1 and E2 are equations of form (1), p1 and p2

are their regular points, and the invariants IkE1
and IkE2

, k = 1, 2, . . . , 6, are
constants in some neighborhoods of p1 and p2 respectively. Then there exists
a point transformation of neighborhoods of the points p1 and p2 transforming
E1 to E2 and taking p1 to p2 iff

IkE1
(p1) = IkE2

(p2) ∀ k.

Proof. The necessity is obvious. Prove the sufficiency. Consider regular
neighborhoods Up1 of p1 and Up2 of p2 so that IkE1

|Up1
and IkE2

|Up2
are con-

stants, k = 1, 2, . . . , 6. Restrict E1 to Up1 and E2 to Up2 . By Y we denote
the PDE Y(E1|Up1

,E2|Up2
).

Consider the equation Y(3). We have that Smbly Y(3) = {0} for every
point y ∈ Y(3).

Check that the projection τ6,5 :
(
Y(3)

)(1) = Y(4) −→ Y(3) is a surjection.
Suppose j5pf ∈ Y(3). Then j5pf takes j3pSE1 to j3f(p)SE2 . Taking into account
that the isotropy algebra gθ3 = {0} for every point θ3 ∈ Orb0

3, we get
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that there exists a unique 5-jet of point transformations taking j3pSE1 to
j3f(p)SE2 . It follows from the condition IkE1

|Up1
= IkE2

|Up2
∀ k that the jets

j4pSE1 and j4f(p)SE2 belong to the same orbit of J4π. Hence there exists a 6-

jet j6pf
′ ∈ Y(4) transforming j4pSE1 to j4f ′(p)SE2 . Obviously, τ6,5(j6pf

′) = j5pf .

Thus the projection
(
Y(3)

)(1) −→ Y(3) is a surjection.
The 3-jets j3p1SE1 and j3p2SE2 belong to the orbit Orb0

3. Hence there exists
a (unique) jet j5p1f of point transformations taking j3p1SE1 to j3p2SE2 . Now
it follows from Theorem 8.1 that there exists a solution f ′ of the equation
Y such that j5p1f

′ = j5p1f . �

In the second case, the equivalence problem is solved by

Theorem 8.3. Suppose E1 and E2 are equations of form (1), p1 and p2

are their regular points. Suppose JE1 ∈ { I1
E1
, . . . , I6

E1
}, dJE1

∣∣
p
6= 0, and

JE1 generates A5
E1

in some neighborhood of p1. Then there exists a point
transformation of neighborhoods of p1 and p2 transforming E1 to E2 and
taking p1 to p2 iff the following conditions hold:

(1) dJE2

∣∣
p2
6= 0, JE2 generates A5

E2
, and JE1(p) = JE2(p2).

(2) If IkE1
= F k(JE1) and

(
ξj(Ik)

)
E1

= F kj (JE1) in some neighborhood of
p1, then IkE2

= F k(JE2) and
(
ξj(Ik)

)
E2

= F kj (JE2) in some neighbor-
hood of p2, k = 1, 2, . . . , 6, j = 1, 2.

Proof. The necessity is obvious. Prove the sufficiency. It is clear that there
exists a neighborhood V of the point JE1(p1) = JE2(p2) in R such that JE1

generates A5
E1

in Up1 = J−1
E1

(V ) and conditions (1) and (2) are satisfied for
E2 in Up2 = J−1

E2
(V ). Let Y = Y(E1|Up1

,E2|Up2
). Then Smbly Y(4) = {0} for

every point y ∈ Y(4).
Check that the projection τ7,6 :

(
Y(4)

)(1) = Y(5) −→ Y(4) is a surjec-
tion. Let j6pf ∈ Y(4). This means that j6pf transforms j4pSE1 to j4f(p)SE2 .
Taking into account that the isotropy algebra gθ4 = {0} for every point
θ4 ∈ (π4,3)−1(Orb0

3), we get that j6pf is a unique 6-jet transforming j4pSE1

to j4f(p)SE2 . The jets j4pSE1 and j4f(p)SE2 belongs to the same orbit. Hence
JE1(j

4
pSE1) = JE2(j

4
f(p)SE2). From condition (2) of the theorem, we get that

IE1(j
5
pSE1) = IE2(j

5
f(p)SE2) for every I ∈ A5. This means that the 5-jets

j5pSE1 and j5f(p)SE2 belong to the same orbit. Hence there exists a 7-jet

j7pf
′ ∈ Y(5) transforming j5pSE1 to j5f ′(p)SE2 . Obviously τ7,6(j7pf

′) = j6pf .

Thus the projection
(
Y(4)

)(1) −→ Y(4) is a surjection.
It follows from conditions of the theorem that the 4-jets j4p1SE1 and j4p2SE2

belong to the same orbit. Hence there exists a (unique) jet j6p1f transform-
ing j4p1SE1 to j4p2SE2 . Now it follows from Theorem 8.1 that there exists a
solution f ′ of the equation Y such that j6pf

′ = j6pf . �

In the last case, the equivalence problem is solved by the following theo-
rem, which is proved in the same way as the previous one.
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Theorem 8.4. Suppose E1 and E2 are equations of form (1), p1 and p2

are their regular points. Suppose invariants J1
E1

, J2
E1

of the collection of
the invariants { IkE1

,
(
ξj(Ik)

)
E1
}k=1,2,...,6, j=1,2 are functionally independent

in some neighborhood of p1. Then there exists a point transformation of
neighborhoods of p1 and p2 transforming E1 to E2 and taking p1 to p2 iff the
following conditions hold:

(1) The invariants J1
E2
, J2

E2
are functionally independent in some neigh-

borhood of p2, J1
E1

(p1) = J1
E2

(p2), and J2
E1

(p1) = J2
E2

(p2).
(2) If IkE1

= F k(J1
E1
, J2

E1
) and

(
ξj(Ik)

)
E1

= F kj (J1
E1
, J2

E1
) in some neigh-

borhood of p1, then IkE2
= F k(J1

E2
, J2

E2
) and

(
ξj(Ik)

)
E2

= F kj (J1
E2
, J2

E2
)

in some neighborhood of p2, k = 1, 2, . . . , 6, j = 1, 2.

9. Appendix

9.1. The proof of Proposition 2.1. Suppose X and Y are vector fields
on the base of π, ft and gs are their flows respectively. Then

[X(k), Y (k) ] = lim
t→0

1
t

(
Y (k) − (f (k)

t )∗(Y (k) ◦ f (k)
−t )

)
= lim

t→0

1
t

( d

ds

∣∣∣
s=0

g(k)
s − (f (k)

t )∗
( d
ds

∣∣∣
s=0

g(k)
s ◦ f (k)

−t
) )

= lim
t→0

1
t

( d

ds

∣∣∣
s=0

g(k)
s

− d

ds

∣∣∣
s=0

f
(k)
t ◦ g(k)

s ◦ f (k)
−t

)
= lim

t→0

1
t

d

ds

∣∣∣
s=0

(
g(k)
s ◦ f (k)

t ◦ g(k)
s ◦ f (k)

−t

)
= lim

t→0

1
t

d

ds

∣∣∣
s=0

(
gs ◦ ft ◦ gs ◦ f−t

)(k)
= lim

t→0

1
t

( d

ds

∣∣∣
s=0

gs

− d

ds

∣∣∣
s=0

ft ◦ gs ◦ f−t
)(k)

= lim
t→0

1
t

(
Y − (ft)∗(Y ◦ f−t)

)(k) = [X, Y ](k) .

The R – linearity of the map X 7→ X(k) is obvious. This completes the
proof.

9.2. The proof of Theorem 5.3. Let 01 be the point of J1π such that
its standard coordinates are zeros and let θ2 be an arbitrary point of the
fiber (π2,1)−1(01). Taking into account that J1π is an orbit of the action of
Γ, we obtain that it is enough to prove this theorem for the point θ2.

From propositions 3.1, we get that the algebra g01 is defined by the system

X2
11 = 0, X1

11 − 2X2
12 = 0, 2X1

12 −X2
22 = 0, X1

22 = 0,

X2
111 = 0, X1

111 − 2X2
112 = 0, 2X1

112 −X2
122 = 0, X1

122 = 0,

X2
112 = 0, X1

112 − 2X2
122 = 0, 2X1

122 −X2
222 = 0, X1

222 = 0.

Whence,

g01 =
{
j30X = ( 0, Xi

j , X
i
j1j2 , 0 )

}
,

where the components Xi
j are arbitrary and the components Xi

j1j2
satisfy

to (19). From propositions 4.1, we get that the space Aθ2 is defined by the
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system

X2
11 = 0, X1

11 − 2X2
12 = 0, 2X1

12 −X2
22 = 0, X1

22 = 0,

X2
111 = u1

1iX
i, −X1

111 + 2X2
112 = u2

1iX
i, −2X1

112 +X2
122 = u3

1iX
i,

X1
122 = −u4

1iX
i,

X2
112 = u1

i2X
i, −X1

112 + 2X2
122 = u2

i2X
i, −2X1

122 +X2
222 = u3

i2X
i,

X1
222 = −u4

i2X
i.

Whence,
Aθ2 =

{
j30X = (Xi, Xi

j , X
i
j1j2 , X

i
j1j2j3 )

}
,

where the components Xi
j are arbitrary and the components Xi

j1j2
satisfy to

(19). It follows that there exists a horizontal subspace H ⊂ Aθ2 such that

H =
{
j30X = (Xi, 0, 0, hij1j2j3,rX

r )
}
.

Obviously, this subspace satisfies condition (31). Hence

ωH(Xp, Yp) =
(
(hij1j2r,s − hij1j2s,r)X

rY s
)
,

where Xp = (X1, X2) and Yp = (Y 1, Y 2). An arbitrary horizontal subspace
H̃ ⊂ Aθ2 has the form

H̃ =
{
j30X = (Xi, hij,rX

r, hij1j2,rX
r, hij1j2j3,rX

r )
}
,

where the components hij1j2,rX
r satisfy to (19). Let H̃ satisfies (31). Then

ωH̃(Xp, Yp) =
(
(hkj1j2,rh

i
k,s − hkj1j2,sh

i
k,r + hkj1,rh

i
kj2,s − hkj1,sh

i
kj2,r

+ hkj2,rh
i
kj1,s − hkj2,sh

i
kj1,r + hij1j2r,s − hij1j2s,r )XrY s

)
.

Consequently,

(ωH̃ − ωH )(Xp, Yp)

= (hkj1j2,rh
i
k,s − hkj1j2,sh

i
k,r + hkj1,rh

i
kj2,s − hkj1,sh

i
kj2,r

+ hkj2,rh
i
kj1,s − hkj2,sh

i
kj1,r )XrY s .

Prove that ωH̃ − ωH = 0. Condition (31) for H̃ means that

his,r = hir,s ∀ i, r, s and

h1
11,2 − h1

12,1 = h2
1,2h

1
1,2 − h2

1,1h
1
2,2 ,

h1
12,2 − h1

22,1 = h1
2,2h

1
1,1 + h2

2,2h
1
1,2 − h1

1,2h
1
1,2 − h2

1,2h
1
2,2 ,

h2
11,2 − h2

12,1 = h1
1,2h

2
1,1 + h2

1,2h
2
1,2 − h1

1,1h
2
1,2 − h2

1,1h
2
2,2 ,

h2
12,2 − h2

22,1 = h1
2,2h

2
1,1 − h1

1,2h
2
1,2 .

Taking into account that the components hij1j2,rX
r satisfy (19), we can

rewrite the last system in the following way

2h2
12,2 − h1

12,1 = h2
1,2h

1
1,2 − h2

1,1h
1
2,2 ,

h1
12,2 = h1

2,2h
1
1,1 + h2

2,2h
1
1,2 − h1

1,2h
1
1,2 − h2

1,2h
1
2,2 ,

−h2
12,1 = h1

1,2h
2
1,1 + h2

1,2h
2
1,2 − h1

1,1h
2
1,2 − h2

1,1h
2
2,2 ,

h2
12,2 − 2h1

12,1 = h1
2,2h

2
1,1 − h1

1,2h
2
1,2 .
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From this system, the components hij1j2,k are expressed in the terms of the
components hij,k in the following way:

h2
12,2 = h2

1,2h
1
1,2 − h2

1,1h
1
2,2 ,

h1
12,2 = h1

2,2h
1
1,1 + h2

2,2h
1
1,2 − h1

1,2h
1
1,2 − h2

1,2h
1
2,2 ,

h2
12,1 = −h1

1,2h
2
1,1 − h2

1,2h
2
1,2 + h1

1,1h
2
1,2 + h2

1,1h
2
2,2 ,

h1
12,1 = h2

1,2h
1
1,2 − h2

1,1h
1
2,2 .

(47)

The values of the 2–form ωH̃ − ωH belong to g2 and g2 is defined by (19).
Therefore to prove that ωH̃ − ωH is zero, it is enough to check that the
components (ωH̃ − ωH)112,12 and (ωH̃ − ωH)212,12 of ωH̃ − ωH are zeros. It
can be easily checked by direct calculations applying (47), the equalities
his,r = hir,s, and taking into account that the components hij1j2,rX

r satisfy
(19). This concludes the proof.

9.3. The expression of ω2 in the standard coordinates. Let θ2 be an
arbitrary point of J2π, θ1 = π2,1(θ2), and p = π2(θ2). Then it follows from
g1
θ1

= L0
p/L

1
p and L1

p/L
2
p ⊂ L0

p/L
1
p ⊗ T ∗p that there are horizontal subspaces

of H ⊂ Aθ2 so that

H =
{
j3pX = (Xi, 0, hij1j2,rX

r, hij1j2j3,rX
r )

}
. (48)

Suppose H is one of these horizontal subspaces and j3pX, j
3
pY ∈ H. Then

[ j3pX, j
3
pY ] =

(
0 , (hij1r,s − hij1s,r)X

rY s , (hij1j2r,s − hij1j2s,r)X
rY s,

)
.

It follows that H satisfies (31) iff

hijr,s = hijr,s ∀ i, j, r, s .

Vectors j3pX ∈ H satisfy the system,

ψiX(θ1) = 0 , D1(ψiX )(θ2) = 0 , D2(ψiX )(θ2) = 0 , (49)
i = 1, 2, 3, 4

defining Aθ2 , see Proposition 4.1. The eight last equations of this system ex-
press the components hij1j2j3,r in the terms of hij1j2,r. The four first equations
of this system

−u0
1X

1 − u0
2X

2 + h2
11,rX

r = 0 ,

−u1
1X

1 − u1
2X

2 − h1
11,rX

r + 2h2
12,rX

r = 0 ,

−u2
1X

1 − u2
2X

2 − 2h1
12,rX

r + h2
22,rX

r = 0 ,

−u3
1X

1 − u3
2X

2 − h1
22,rX

r = 0

connect the components hij1j2,r. It is easy to see that this system has a
unique solution hij1j2,r satisfying the condition hijr,s = hijr,s for all i, j, r, s.
This solution is described by the formulas

h1
11,1 = 2u0

2 − u1
1 , h

1
11,2 =

1
3
(u1

2 − 2u2
1 ) , h1

12,2 = −u3
1 , h

1
22,2 = −u3

2 ,

h2
11,1 = u0

1 , h
2
11,2 = u0

2 , h
2
12,2 =

1
3
( 2u1

2 − u0
1 ) , h2

22,2 = −2u3
1 + u2

2 .
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Thus in Aθ2 , there exists a unique horizontal subspace H satisfying (48) and
(31). From above-mentioned formula for brackets of vectors of H, we get

ωθ2 = (hij1j2r,s − hij1j2s,r)
( ∂

∂xi
⊗ (dxj1 � dxj2)

)
⊗ (dxr ∧ dxs) .

Taking into account (19) and (22), we get

ωθ2 =
(
(h1

111,2 − h1
112,1) · e1 + (h2

221,2 − h2
222,1) · e2

)
⊗ (dx1 ∧ dx2) .

From the eight last equations of system (49), we get that

h1
111,2 − h1

112,1 = F 1 , h2
221,2 − h2

222,1 = F 2 ,

where F 1 and F 2 are defined by (26). Thus we obtain the following expres-
sion of ω2 in the standard coordinates

ω2 =
(
F 1

(
2
∂

∂x1
⊗ (dx1 � dx1) +

∂

∂x2
⊗ (dx1 � dx2)

)
+ F 2

(
2
∂

∂x2
⊗ (dx2 � dx2) +

∂

∂x1
⊗ (dx1 � dx2)

))
⊗ (dx1 ∧ dx2) .

9.4. The proof of Lemma 6.4. Let us calculate components of the tensor
tH in the standard base of Tp to check the required symmetry.

In the standard coordinates, the horizontal subspace H is defined by the
quantities hij,k, h

i
j1j2,k

, . . ., hij1...j4,k, i, j1, . . . , j4, k = 1, 2

H =
{
j4pX =

(
Xi, Xk(hij,k, h

i
j1j2,k, h

i
j1j2j3,k, h

i
j1j2j3j4,k )

)
.

Condition (39) means
hij,k = hik,j ∀ i, j, k.

Let
[j4pX, j

4
pY ] = ( 0, 0, gij1j2 , g

i
j1j2,j3 ) (50)

in the standard coordinates. Then

w =
[
j3pZ, [j

4
pX, j

4
pY ]

]
= Zk( gijk, −grj1j2h

i
r,k + hrj1,kg

i
rj2 + hrj2,kg

i
rj1 + gij2j1k ),

[j2pU,w] = UmZk( gimk, h
r
j,mg

i
rk − grjkh

i
r,m

− grjmh
i
r,k + hrj,kg

i
rm + hrm,kg

i
rj + gijmk )

and

[j2pU,w]− j1pZ̃ = UmZk(hrj,mg
i
rk − grjkh

i
r,m − hij,rg

r
mk

− grjmh
i
r,k + hrj,kg

i
rm + hrm,kg

i
rj + gijmk ). (51)

Taking into account that hij,k = hik,j for all i, j, k, we get that the expression

hrj,mg
i
rk − grjkh

i
r,m − grmkh

i
r,j − grjmh

i
r,k + hrj,kg

i
rm + hrm,kg

i
rj + gijmk.

is symmetric over the indexes j, k and m. This completes the proof.
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9.5. The proof of Theorem 6.5. We calculate the tensor ω3
H in the stan-

dard coordinates to prove the theorem. To this end, we carry out the fol-
lowing steps:

(1) Calculate components hij,k of a horizontal subspace H satisfying
property (38).

(2) Calculate the components gij1j2 and gij1j2,j3 of [j4pX, j
4
pY ], where

j4pX, j
4
pY ∈ H.

(3) Calculate the components tijmk of the tensors tH and the components
t̃ijmk of the tensors µ̃(tH).

(4) Finally, calculate components of the tensor ω3
H .

Recall that θ3 ∈ (π3,2)−1(Orb0
2). Therefore

(
F 1(θ2), F 2(θ2)

)
6= 0 for θ2 =

π3,2(θ3).
In this proof, we suppose that F 1(θ2) 6= 0. For the case F 2(θ2) 6= 0, the

proof is the same. We omit it.
Step (1). Let H be an arbitrary horizontal subspace of Aθ3 satisfying

(38). Then it follows from (37) that the components hij,k of H are defined
by the system of equations

hij,k = hik,j ∀ i, j, k,
2F 1h1

1,1 + F 2h2
1,1 + F 1h2

1,2 = −D1F
1,

2F 1h1
1,2 + F 2h2

1,2 + F 1h2
2,2 = −D2F

1,

F 2h1
1,1 + F 1h1

1,2 + 2F 2h2
1,2 = −D1F

2,

F 2h1
1,2 + F 1h1

2,2 + 2F 2h2
2,2 = −D2F

2.

From this system, we get

h1
1,2 = h1

2,1 =
(
2h2

1,1(F
2)2 + 3h1

1,1F
1F 2 − F 1F 2

x + 2F 1
xF

2
)
/(F 1)2,

h1
2,2 =

(
4h2

1,1(F
2)3 + 5h1

1,1F
1(F 2)2

− (F 1)2F 2
y + 2F 1F 1

yF
2 − 3F 1F 2F 2

x + 4F 1
x (F 2)2

)
/(F 1)3,

h2
1,2 = h2

2,1 =
(
−h2

1,1F
2 − 2h1

1,1F
1 − F 1

x

)
/F 1,

h2
2,2 =

(
−3h2

1,1(F
2)2 − 4h1

1,1F
1F 2

− F 1F 1
y + 2F 1F 2

x − 3F 1
xF

2
)
/(F 1)2.

(52)

Here the components h1
1,1 and h2

1,1 are arbitrary. They define the arbitrari-
ness in the choice of a horizontal subspace H satisfying property (38).

Step (2). It is clear from the construction of the invariant ω2 that the
components gijk in (50), which are symmetric over the indexes j and k, are
defined by

g1
12 = F 2(θ2)λ, g2

12 = F 1(θ2)λ, λ = X1Y 2 −X2Y 1,

g1
11 = 2g2

12, g2
22 = 2g1

12, g1
22 = 0, g2

11 = 0.
(53)

It follows from (23) and the system of equation defining gθ1 , see Proposi-
tion 3.1, that the components gij1j2j3 in (50), which are symmetric over the



DIFFERENTIAL INVARIANTS 29

indexes j1, j2, and j3, are defined by the equations

g1
111 = −3F 2u0λ, g1

112 = −F 2u1λ, g1
122 = −F 2u2λ, g1

222 = −3F 2u3λ,

g2
111 = 3F 1u0λ, g2

112 = F 1u1λ, g2
122 = F 1u2λ, g2

222 = 3F 1u3λ .
(54)

Step (3). Substituting (52), (53) and (54) in (51), we obtain the compo-
nents tijmk of the tensor tH :

t1111 = 3λF 2(h2
11 − u0),

t1112 = t1121 = t1211 = λF 2(−2h2
11F

2 − 5h1
11F

1 − F 1u1 − 2F 1
x )/F 1,

t1122 = t1212 = t1221 = λF 2
(
−7h2

11(F
2)2 − 10h1

11F
1F 2 − (F 1)2u2 − F 1F 1

y

+ 4F 1F 2
x − 7F 1

xF
2
)
/
(
(F 1)2

)
,

t1222 = 3λF 2
(
−4h2

11(F
2)3 − 5h1

11F
1(F 2)2 − (F 1)3u3 + (F 1)2F 2

y

− 2F 1F 1
yF

2 + 3F 1F 2F 2
x − 4F 1

x (F 2)2
)
/
(
(F 1)3

)
,

t2111 = 3λF 1(−h2
11 + u0),

t2112 = t2121 = t2211 = λ(2h2
11F

2 + 5h1
11F

1 + F 1u1 + 2F 1
x ),

t2122 = t2212 = t2221 = λ
(
7h2

11(F
2)2 + 10h1

11F
1F 2 + (F 1)2u2 + F 1F 1

y

− 4F 1F 2
x + 7F 1

xF
2
)
/F 1,

t2222 = 3λ
(
4h2

11(F
2)3 + 5h1

11F
1(F 2)2 + (F 1)3u3 − (F 1)2F 2

y

+ 2F 1F 1
yF

2 − 3F 1F 2F 2
x + 4F 1

x (F 2)2
)
/
(
(F 1)2

)
.

Now we obtain the components t̃ijmk of the tensors µ̃(tH):

t̃1121 = λ
(
5h2

11(F
2)2 + 5h1

11F
1F 2 + (F 1)2u2 + F 1F 1

y − F 1F 2u1

− 4F 1F 2
x + 5F 1

xF
2
)
/(3F 1),

t̃1122 = λ
(
5h2

11(F
2)3 + 5h1

11F
1(F 2)2 + 3(F 1)3u3 − (F 1)2F 2u2 − 3(F 1)2F 2

y

+ 5F 1F 1
yF

2 − 5F 1F 2F 2
x + 5F 1

x (F 2)2
)
/
(
3(F 1)2

)
,

t̃2121 = λ(5h2
11F

2 + 5h1
11F

1 + F 1u1 + 2F 1
x − 3F 2u0)/3,

t̃2122 = λ
(
5h2

11(F
2)2 + 5h1

11F
1F 2 + (F 1)2u2 + F 1F 1

y − F 1F 2u1

− 4F 1F 2
x + 5F 1

xF
2
)
/(3F 1),

t̃1121 = t̃1211, t̃1122 = t̃1212, t̃2121 = t̃2211, t̃2122 = t̃2212,

t̃1111 = 2t̃2121, t̃1112 = 2t̃2122, t̃2221 = 2t̃1121, t̃2222 = 2t̃1122,

t̃1221 = t̃1222 = t̃2111 = t̃2112 = 0.
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Step (4). Taking into account expression (35) of βθ2 , we obtain the com-
ponents (ω3

H)ijk of the tensor ω3
H = βθ2 µ̃(tH):

(ω3
H)112 = λ3

(
−3(F 1)2u3 + 2F 1F 2u2 − (F 2)2u1

+ 3F 1F 2
y − 4F 1

yF
2 + F 2F 2

x

)
/3,

(ω3
H)212 = λ3

(
−(F 1)2u2 + 2F 1F 2u1 − 3(F 2)2u0

− F 1F 1
y + 4F 1F 2

x − 3F 1
xF

2
)
/3,

(ω3
H)111 = 2(ω3

H)212, (ω3
H)222 = 2(ω3

H)112, (ω3
H)122 = (ω3

H)211 = 0.

We get that the components of ω3
H are independent of the choice of a hori-

zontal subspace H satisfying (38). This completes the proof.

References

[1] D.V.Alekseevskiy, V.V.Lychagin, A.M.Vinogradov, Fundamental ideas and concep-
tions of differential geometry, Sovremennye problemy matematiki. Fundamental’nye
napravleniy, Vol. 28 (Itogi nauki i techniki, VINITI, AN SSSR, Moscow, 1988
(Russian)) [English transl.: Encyclopedia of Math. Sciences, Vol.28 (Springer, Berlin,
1991)]

[2] V.I.Arnold, Advanced chapters of the theory of ordinary differential equations, Nauka,
Moskow, 1978 (in Russian).

[3] M.V. Babich and L.A. Bordag, Projective differential geometrical structure of the
Painleve equations, J. Dif. Equations, 1999, V.157, No.2, pp.452-485.

[4] I.N.Bernshteyn, B.I.Rozenfel’d, Homogeneous spaces of infinite dimensional Lie al-
gebras and characteristic classes of foliations, Uspekhi Matematicheskikh Nauk, vol
28, No. 4, pp. 103-138, 1973. (in Russian)

[5] S.S. Chern, Projective geometry, contact transformations, and CR-structures, 1982,
Arch. Math. Vol. 38, pp. 1 - 5.

[6] E. Cartan, Sur les varietes a connexion projective, Bull. Soc. Math. France 52 (1924),
205 – 241.

[7] R.B. Gardner, Differential geometric methods interacting control theory, in ”Differen-
tial geometry control theory” (R.W. Brockett et al., Eds.), pp.117-180, Birkhauser,
Boston, 1983.

[8] C. Grissom, G. Thompson, and G. Wilkens, Linearization of second order ordinary
differential equations via Cartan’s equivalence method, J. Differential Equations, 1989,
Vol. 77, pp.1–15.

[9] V.Guillemin, S.Sternberg, An algebraic model of transitive differential geometry, Bull.
Amer. Math. Soc., vol. 70, (1964), pp. 16-47.

[10] V.Guillemin, S.Sternberg, Deformation theory of pseudogroup structures, AMS, No.
64, 1966, pp. 1-80.

[11] V.N.Gusyatnikova, V.A.Yumaguzhin, Point transformations and linearisability of 2-
order ordinary differential equations, Matemeticheskie Zametki Vol. 49, No. 1, pp.
146 - 148, 1991 (in Russian).

[12] L. Hsu and N. Kamran, Classification of second-order ordinary differential equations
admitting Lie groups of fiber-preserving point symmetries, Proc. London Math. Soc.,
(3), 58(1989), 387-416

[13] N. Kamran, K.G. Lamb, and W.F. Shadwick, The local equivalence problem for
d2y/dx2 = F (x, y, dy/dx) and the Painleve transcendents, J. Dif. Geometry, 22, 1985,
139-150.

[14] I.S.Krasil’shchik, V.V.Lychagin, A.M.Vinogradov, Geometry of Jet Spaces and Non-
linear Partial Differential Equations, Gordon and Breach, New York, 1986.

[15] I.S. Krasil’shchik and A.M. Vinogradov, Editors, Symmetries and conservation laws
for differential equations of mathematical Physics, Translations of Mathematical
Monographs. Vol.182, Providence RI: American Mathematical Society, 1999.



DIFFERENTIAL INVARIANTS 31

[16] M.Kuranishi, Lectures on involutive systems of partial differential equations, São
Paulo, 1967.

[17] S. Lie, Vorlesungen über continuierliche gruppen, Teubner, Leipzig, 1893.
[18] S. Lie, Theorie der transformationsgruppen, Vol. III, Teubner, Leipzig, 1930.
[19] R. Liouville, Sur les invariantes de certaines equationes differentielles, Jour. de l’Ecole

Politechnique, 59 (1889) 7–88.
[20] I.M. Singer, S. Sternberg, On the infinite groups of Lie and Cartan,I, J. Analyse

Math. Vol. 15, pp. 1-114, 1965.
[21] S. Sternberg, Lectures on Differential Geometry, New Jersy, Prentice-Hall, Inc., 1964.
[22] G. Thomsen, Uber die topologischen Invarianten der Differentialgleichung y′′ =

f(x, y)y′ 3 + g(x, y)y′ 2 + h(x, y)y′ + k(x, y), Abh. Math. Sem. Hamburg. Univ. 7
(1930), 301-328.

[23] A. Tresse, Sur les invariants differentiels des groupes continus de transformations,
Acta Math. 18 (1894), 1-88.

[24] G. Thompson, Cartan’s method of equivalence and second-order equation fields, Letter
to the editor, J. Phys. A.: Math. Gen. 18 (1985), L1009-L1015.

[25] A.M. Vinogradov, Scalar differential invariants, diffieties and characteristic classes,
in: Mechanics, Analysis and Geometry: 200 Years after Lagrange, ed. M. Francaviglia
(North-Holland), pp.379–414, 1991.

[26] V.A.Yumaguzhin, On the obstruction to linearizability of 2-order ordinary differen-
tial equations, Acta Applicandae Mathematicae, Vol. 83, No. 1-2, 2004. pp.133-148.
arXiv:0804.0306

Program Systems Institute of RAS, Pereslavl’-Zalesskiy, 152020, Russia
E-mail address: yuma@diffiety.botik.ru


